"
".

EARTHQUAKES


EARTHQUAKES
Earthquakes are the result of plate tectonics, or shifting plates in the crust of Earth, and quakes occur when the frictional stress of gliding plate boundaries builds and causes failure at a fault line. In an earthquake, elastic strain energy is released and waves radiate, shaking the ground. Scientists can predict where major temblors might occur in a general sense, but research does not yet allow forecasts for specific locations or accurate predictions of timing. Major earthquakes, some generating tsunamis, have leveled entire cities and affected whole countries. Relatively minor earthquakes can also be induced, or caused by human activity, including extraction of minerals from Earth and the collapse of large buildings.

In its most generic sense, the word earthquake is used to describe any seismic event — whether a natural phenomenon or an event caused by humans — that generates seismic waves. Earthquakes are caused mostly by rupture of geological faults, but also by volcanic activity, landslides, mine blasts, and nuclear experiments. An earthquake's point of initial rupture is called its focus or hypocenter. The term epicenter refers to the point at ground level directly above the hypocenter.

This article is about the natural seismic phenomenon. For other uses, see Earthquake (disambiguation).
"Quake" redirects here. For other uses, see Quake (disambiguation).
An earthquake (also known as a quake, tremor, temblor or seismic activity) is the result of a sudden release of energy in the Earth's crust that creates seismic waves. Earthquakes are measured with a seismometer; a device which also records is known as a seismograph. The moment magnitude (or the related and mostly obsolete Richter magnitude) of an earthquake is conventionally reported, with magnitude 3 or lower earthquakes being mostly imperceptible and magnitude 7 causing serious damage over large areas. Intensity of shaking is measured on the modified Mercalli scale.

At the Earth's surface, earthquakes manifest themselves by shaking and sometimes displacing the ground. When a large earthquake epicenter is located offshore, the seabed sometimes suffers sufficient displacement to cause a tsunami. The shaking in earthquakes can also trigger landslides and occasionally volcanic activity.

In its most generic sense, the word earthquake is used to describe any seismic event — whether a natural phenomenon or an event caused by humans — that generates seismic waves. Earthquakes are caused mostly by rupture of geological faults, but also by volcanic activity, landslides, mine blasts, and nuclear experiments. An earthquake's point of initial rupture is called its focus or hypocenter. The term epicenter refers to the point at ground level directly above the hypocenter.


Global earthquake epicenters, 1963–1998
Global plate tectonic movementContents [hide]
1 Naturally occurring earthquakes
1.1 Earthquake fault types
1.2 Earthquakes away from plate boundaries
1.3 Shallow-focus and deep-focus earthquakes
1.4 Earthquakes and volcanic activity
1.5 Earthquake clusters
1.5.1 Aftershocks
1.5.2 Earthquake swarms
1.5.3 Earthquake storms
2 Size and frequency of occurrence
3 Induced seismicity
4 Measuring and locating earthquakes
5 Effects/impacts of earthquakes
5.1 Shaking and ground rupture
5.2 Landslides and avalanches
5.3 Fires
5.4 Soil liquefaction
5.5 Tsunami
5.6 Floods
5.7 Tidal forces
5.8 Human impacts
6 Major earthquakes
7 Preparation
8 History
8.1 Pre-Middle Ages
9 Earthquakes in culture
9.1 Mythology and religion
9.2 Popular culture
10 See also
11 Notes
12 General references
13 External links
13.1 Educational
13.2 Seismological data centers
13.2.1 Europe
13.2.2 Japan
13.2.3 New Zealand
13.2.4 United States
13.3 Seismic scales
13.4 Scientific information
13.5 Miscellaneous


Naturally occurring earthquakes

Fault typesTectonic earthquakes will occur anywhere within the earth where there is sufficient stored elastic strain energy to drive fracture propagation along a fault plane. In the case of transform or convergent type plate boundaries, which form the largest fault surfaces on earth, they will move past each other smoothly and aseismically only if there are no irregularities or asperities along the boundary that increase the frictional resistance. Most boundaries do have such asperities and this leads to a form of stick-slip behaviour. Once the boundary has locked, continued relative motion between the plates leads to increasing stress and therefore, stored strain energy in the volume around the fault surface. This continues until the stress has risen sufficiently to break through the asperity, suddenly allowing sliding over the locked portion of the fault, releasing the stored energy. This energy is released as a combination of radiated elastic strain seismic waves, frictional heating of the fault surface, and cracking of the rock, thus causing an earthquake. This process of gradual build-up of strain and stress punctuated by occasional sudden earthquake failure is referred to as the Elastic-rebound theory. It is estimated that only 10 percent or less of an earthquake's total energy is radiated as seismic energy. Most of the earthquake's energy is used to power the earthquake fracture growth or is converted into heat generated by friction. Therefore, earthquakes lower the Earth's available elastic potential energy and raise its temperature, though these changes are negligible compared to the conductive and convective flow of heat out from the Earth's deep interior.

Earthquake fault types

There are three main types of fault that may cause an earthquake: normal, reverse (thrust) and strike-slip. Normal and reverse faulting are examples of dip-slip, where the displacement along the fault is in the direction of dip and movement on them involves a vertical component. Normal faults occur mainly in areas where the crust is being extended such as a divergent boundary. Reverse faults occur in areas where the crust is being shortened such as at a convergent boundary. Strike-slip faults are steep structures where the two sides of the fault slip horizontally past each other ; transform boundaries are a particular type of strike-slip fault. Many earthquakes are caused by movement on faults that have components of both dip-slip and strike-slip; this is known as oblique slip.

Earthquakes away from plate boundaries
Where plate boundaries occur within continental lithosphere, deformation is spread out over a much larger area than the plate boundary itself. In the case of the San Andreas fault continental transform, many earthquakes occur away from the plate boundary and are related to strains developed within the broader zone of deformation caused by major irregularities in the fault trace (e.g. the “Big bend” region). The Northridge earthquake was associated with movement on a blind thrust within such a zone. Another example is the strongly oblique convergent plate boundary between the Arabian and Eurasian plates where it runs through the northwestern part of the Zagros mountains. The deformation associated with this plate boundary is partitioned into nearly pure thrust sense movements perpendicular to the boundary over a wide zone to the southwest and nearly pure strike-slip motion along the Main Recent Fault close to the actual plate boundary itself. This is demonstrated by earthquake focal mechanisms.

All tectonic plates have internal stress fields caused by their interactions with neighbouring plates and sedimentary loading or unloading (e.g. deglaciation). These stresses may be sufficient to cause failure along existing fault planes, giving rise to intraplate earthquakes.

Shallow-focus and deep-focus earthquakes
The majority of tectonic earthquakes originate at the ring of fire in depths not exceeding tens of kilometers. Earthquakes occurring at a depth of less than 70 km are classified as 'shallow-focus' earthquakes, while those with a focal-depth between 70 and 300 km are commonly termed 'mid-focus' or 'intermediate-depth' earthquakes. In subduction zones, where older and colder oceanic crust descends beneath another tectonic plate, deep-focus earthquakes may occur at much greater depths (ranging from 300 up to 700 kilometers). These seismically active areas of subduction are known as Wadati-Benioff zones. Deep-focus earthquakes occur at a depth at which the subducted lithosphere should no longer be brittle, due to the high temperature and pressure. A possible mechanism for the generation of deep-focus earthquakes is faulting caused by olivine undergoing a phase transition into a spinel structure.

Earthquakes and volcanic activity
Earthquakes often occur in volcanic regions and are caused there, both by tectonic faults and the movement of magma in volcanoes. Such earthquakes can serve as an early warning of volcanic eruptions, like during the Mount St. Helens eruption of 1980. Earthquake swarms can serve as markers for the location of the flowing magma throughout the volcanoes. These swarms can be recorded by seismometers and tiltimeters (a device which measures the ground slope) and used as sensors to predict imminent or upcoming eruptions.

Earthquake clusters
Most earthquakes form part of a sequence, related to each other in terms of location and time. Most earthquake clusters consist of small tremors which cause little to no damage, but there is a theory that earthquakes can recur in a regular pattern.

Aftershocks

An aftershock is an earthquake that occurs after a previous earthquake, the mainshock. An aftershock is in the same region of the main shock but always of a smaller magnitude. If an aftershock is larger than the main shock, the aftershock is redesignated as the main shock and the original main shock is redesignated as a foreshock. Aftershocks are formed as the crust around the displaced fault plane adjusts to the effects of the main shock.

Earthquake swarms

Earthquake swarms are sequences of earthquakes striking in a specific area within a short period of time. They are different from earthquakes followed by a series of aftershocks by the fact that no single earthquake in the sequence is obviously the main shock, therefore none have notable higher magnitudes than the other. An example of an earthquake swarm is the 2004 activity at Yellowstone National Park.

Earthquake storms

Sometimes a series of earthquakes occur in a sort of earthquake storm, where the earthquakes strike a fault in clusters, each triggered by the shaking or stress redistribution of the previous earthquakes. Similar to aftershocks but on adjacent segments of fault, these storms occur over the course of years, and with some of the later earthquakes as damaging as the early ones. Such a pattern was observed in the sequence of about a dozen earthquakes that struck the North Anatolian Fault in Turkey in the 20th century and has been inferred for older anomalous clusters of large earthquakes in the Middle East.

Size and frequency of occurrence
There are around 500,000 earthquakes each year. 100,000 of these can actually be felt. Minor earthquakes occur nearly constantly around the world in places like California and Alaska in the U.S., as well as in Guatemala. Chile, Peru, Indonesia, Iran, Pakistan, the Azores in Portugal, Turkey, New Zealand, Greece, Italy, and Japan, but earthquakes can occur almost anywhere, including New York City, London, and Australia.[15] Larger earthquakes occur less frequently, the relationship being exponential; for example, roughly ten times as many earthquakes larger than magnitude 4 occur in a particular time period than earthquakes larger than magnitude 5. In the (low seismicity) United Kingdom, for example, it has been calculated that the average recurrences are: an earthquake of 3.7 - 4.6 every year, an earthquake of 4.7 - 5.5 every 10 years, and an earthquake of 5.6 or larger every 100 years. This is an example of the Gutenberg-Richter law.